If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43+57+x^2=180
We move all terms to the left:
43+57+x^2-(180)=0
We add all the numbers together, and all the variables
x^2-80=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $
| 2g-13=2 | | -3|2x-1|+6=10 | | 33+15r=3r-r+4r | | -5(3x-5)-5+4=69 | | h/5+4=6 | | 2=r/2-2 | | -27=m/9 | | 2x+28=4/8x | | 55-10x=11+12x | | 2x-1+6=10 | | c-120=79.95 | | 41=6-5w | | -10=-2y+0 | | |3x+4|=|2x-19| | | 8/7t=-1/8 | | 4(0.5x-3)=9+2x | | 9x-8=-40 | | -2x+5+(-x)+1=0 | | -10=0+9x | | 3x^2+2x=125 | | -5-2-8m=10+5m | | $12.42/(17-n)=$4.14 | | 16x^2-4x+156=0 | | y-0-4=0 | | y-8(0)-4=0 | | 12x+30=10x | | x(x-x)=12 | | -2=2n-10 | | 0-8x-4=0 | | 7-4+3x=63 | | |2x-1|+6=10 | | 17-3=2n-4 |